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Abstract

Thermal conductivity of thin  lm is analyzed in this paper. It has been shown that at low
temperatures, thermal conductivity of  lm is considerably lower than that of bulk structure. Also,
the dependence of activation energy on boundary conditions has been investigated. It has been
found that the implantation of light molecules in  lm boundaries leads to considerably higher
activation temperatures. Our theoretical results proved to be in agreement with some of the latest
experimental data.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Mechanical oscillations are a subsystem, always present when we analyze conductive,
semiconductive and dielectric properties of a system. Consequently, the authors are
 rst going to analyze the kinetics of mechanical oscillations in thin  lms, which can
be considered as a ground for investigations of other properties of these structures. In
a way this work represents generalization of investigations which were carried out in
Refs. [1,2].
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The plane of investigations is as follows. Using the formula

� = DC�M ; (1.1)

where � is the coeIcient of the thermal conductivity, D the diJusion coeIcient,
C the speci c heat and �M the density, we shall determine the coeIcient of
thermal conductivity of thin  lm. The analysis of this coeIcient is of great practical
interest, since it determines the heat isolation and a number of other properties of these
structures [3].
The diJusion coeIcient D (strictly speaking the diJusion tensor Dij) will be found

via the use of Kubo formula [4]. The temperature dependence of  lm density will be
determined using the Green’s function method. Using this method one can  nd the
internal energy and the average value of the square of molecular displacements.
All calculations will be carried out for ideal boundary conditions in  lms, and for

speci c boundary conditions on its surfaces, which can be chosen in a way which leads
to some useful eJects.
The optimal choice of boundary conditions is the main practical goal of investigations

pertaining to deformed structures.

2. The di�usion coe�cient

Starting from the Kubo formula [4,5], one obtains the following expression de ning
the diJusion coeIcient:

Dij = lim
	→∞

∫ ∞

0
dt e−	t〈v̂i(0)v̂j(t)〉 ; (2.1)

where v̂i and v̂j are the velocity operators in Heisenberg representation, and 	 is the
perturbation parameter and indexes i; j take values x; y; z.
The averages are taken over great canonical ansamble, i.e.

〈· · ·〉= Tr{e(�+�N−H)=�(· · ·)} ; (2.2)

where � is the thermodynamical potential, � the chemical potential, and H the Hamil-
tonian of the system and � = kBT .
In order to  nd the correlation function 〈v̂i v̂j〉 we will  nd the Green’s function [6]

�pi(t)|pj(0)� ;

where pi(t); pj(0) are the components of the molecular momentum.
The Hamiltonian of a phonon subsystem is of the form

H =
1
2M

∑
ñ

p2
ñ +

CH

2

∑
ñ

(u2ñ + u2ñ−1̃ − 2uñuñ−1̃); ñ∈ (nx; ny; nz) ; (2.3)

where M is the mass of molecule, CH are Hook’s elasticity constants, u are molecular
displacements, and 1̃ denotes unit elementary cell vector. It should be pointed out
that the Hamiltonian of an ideal structure is taken in harmonics approximation and in
approximation of the nearest neighbours.
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Boundary conditions will be taken into account during the formation of a system of
equations de ning the Green’s function of the system.
We are trying to determine the Green’s function

Gnxnyf;mxmyg ≡�pnxnyf(t)|pmxmyg(0)� : (2.4)

In the expression determining this function, the Green’s function of a type
�unxnyf(t)|umxmyg(0)� appears. Using the standard calculation techniques of two time
temperature Green’s function [6,7], after the transformation:

Gnxnyf;mxmyg(t) =
1

NxNy

∑
kxky

Gkxkyf;kxkyg(t)eikxa(nx−mx)+ikya(ny−my); (2.5)

one obtains the Fourier component of the function Gkxkyf;kxkyg(t) ≡ Gf(t) (the second
index is omitted because it is not essential)

Gf(!) ≡�pf|pf�! =
1
2#

∫ ∞

−∞
Gf(t)ei!t dt (2.6)

in the form

Gf+1(!) + Gf−1(!) + �Gf(!) =
i˝
#

M ; (2.7)

where

� =
M!2

CH
− 4

(
sin2

akx

2
+ sin2

aky

2

)
− 2 : (2.8)

At this stage of calculations we can take into account that the object of our analysis
is a thin  lm and that the boundary conditions have to be included into calculations.
For f ∈ (1; : : : ; Nz − 1) the equation for the Green’s function is of the form

Gf+1(!) + Gf−1(!) + �Gf(!) = R; R ≡ i˝
#

M : (2.9)

At layer f = 0 we have the equation

G1(!) + (� + �0)G0(!) = R ; (2.10)

where �0 is the correction of � of the boundary f = 0, while at the layer f = Nz the
corresponding equation is the following:

GNz−1(!) + (� + �N )GNz (!) = R ; (2.11)

where �N is the correction of � at the boundary f = Nz.
The solution of the system of equations (2.6), (2.8) and (2.10) will be searched for

in the form

Gf(!) = A sinfkza + B sin(f − 1)kza ; (2.12)

where a is the lattice constant, kz is the component of wave vector, and A and B are
the constants which will be determined in accordance with boundary conditions. After
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substitution (2.12) into (2.9), (2.10) and (2.11), we  nd

Gf(!) =
i˝
#

CH
1

!2 − !2
k

; (2.13)

where

!k ≡ !kxkykz = 2�

√
sin2

akx

2
+ sin2

aky

2
+ sin2

akz

2
: (2.14)

The notation used in (2.14) is:

� ≡
√

CH

M
; kx =

2#&x

Nxa
; ky =

2#&y

Nya
; &x=y ∈

[
−Nx=y

2
;+

Nx=y

2

]
; Nx=y ∼ 108 ;

while kz are the solutions of the transcendental equation

cot(Nz − 1)akz

=
4 cos3 akz − 2(�0 + �N ) cos2 akz + (�0�N − 3) cos akz + �0�N

−sin akz[4 cos2 akz + 2(�0 + �N ) cos akz + (1− �0�N )]
: (2.15)

In the “cut-oJ” case [1,8] (the approximation �0 = �N = 0 will be called that) we
obtain

kz =
#&z

Nz + 2
a; &z = 1; 2; 3; : : : ; Nz + 1 : (2.16)

It can be seen that the levels kx and ky are equidistant, while, due to the structure
deformations, levels kz have lost equidistant properties.
The correlation function of the Green’s function (2.12) is given by a general formula

[6]:

〈pf(t)pf(0)〉= lim
	→+0

∫ +∞

−∞
d! e−i!t Gf(! + i	)− Gf(! − i	)

e˝!=� − 1
: (2.17)

The Green’s function (2.12) can be expressed as a sum of elementary fractions. In this
way we obtain the correlation function:

〈pf(t)pf(0)〉= ˝CH

!k

(
e−i!k t

e˝!k =� − 1
− ei!k t

e˝!k =� − 1

)
; (2.18)

wherefrom follows

〈vf(t)vf(0)〉= ˝CH

M 2!k

(
e−i!k t

e˝!k =� − 1
− ei!k t

e˝!k =� − 1

)
: (2.19)

In accordance with the general formula (2.1) the diJusion coeIcient is given by

Df ≡ Df
ii (k)

=
∣∣∣∣ ˝CH

M 2!k

∫ ∞

0

(
e−	t e−i!k t

e˝!k =� − 1
− e−	t ei!k t

e˝!k =� − 1

)
dt
∣∣∣∣= ˝CH

M 2!2
k

: (2.20)
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It can be seen that the phonon diJusion coeIcient of the  lm, as well as of the
bulk, does not depend on temperature [9,10].

3. Thermal conductivity

As it has been stated in the Introduction, the determining of the thermal conductivity
coeIcient, requires (besides the determined diJusion coeIcient) the knowledge of
speci c heat as well as the knowledge of the  lm density. The speci c heat of a
thin  lm has been found in our previous paper [2,11,12]. Taking into account that
the energies of the phonons in the  lm cannot be equal to zero, and applying the
long-wave approximation: 4[sin2(akx=2)+sin2(aky=2)] ≈ a2k2; k2 =k2x +k2y , we obtain
from formula (2.14):

E(̃k) =
√

a2k2E2
0 + (2 ; (3.1)

where

E0 = ˝
√

CH

M
; ( = akminz E0 : (3.2)

Internal energy of the system will be calculated using the standard formula [9,10]:

Uf = 3
∑

kx; ky; kz

E(̃k)[eE(̃k)=� − 1]−1 : (3.3)

Converting the sum in (3.3) to an integral in accordance with the formula: 1

∑
kx; ky; kz

→ 3(Nz + 1)
∑
kx; ky

→ 3NxNy(Nz + 1)a2

4#2

∫ 2#

0
d’
∫ kmax

0
k dk

and taking kmax ≈ kD = 3
√
6#2, we obtain the following expression for the internal

energy of the  lm:

Uf =
3Nf

2#

(
(
E0

)2
�

{[
Z1

(
(
�

)
− ,2Z1

(
,

(
�

)]

+ 2
�
(

[
Z2

(
(
�

)
− ,Z2

(
,

(
�

)]
+ 2

(
�
(

)2 [
Z3

(
(
�

)
− Z3

(
,

(
�

)]}
;

(3.4)

1 The transition
∑

k̃

→ ∫
dk̃ =

∫
d3k of Decarte’s coordinates for  lm must to be carried out to cylindrical

coordinates due to  nite thickness.
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where

ED = E0akmax; E0 = ˝�; Nf = NxNy(Nz + 1); , =
√
1 + (ED=()2 ;

k2 = k2x + k2y; ( = akminz E0; Zr(X ) =
∞∑

j=1

j−re−jX ; (3.5)

(The functions Zr are called Dyson’s functions.)
The expression for the speci c heat per elementary cell is the following [9,10]:

Cf =
1

Nf

@Uf

@T
=

kB

Nf

@Uf

@�
: (3.6)

Combining this formula with formula (3.4) one obtains

Cf =
3kB

2#

(
(
E0

)2{(
�

[(
e(=� − 1

)−1 − ,3(e,(=� − 1)−1
]

+3
[

Z1

(
(
�

)
− ,2Z1

(
,

(
�

)]
+ 6

�
(

[
Z2

(
(
�

)
− ,Z2

(
,

(
�

)]

+ 6
(

�
(

)2 [
Z3

(
(
�

)
− Z3

(
,

(
�

)]}
: (3.7)

To determine the density, we  rst calculate the density correction caused by molec-
ular vibrations. Starting with the standard expression [13]:

ũ ñ =
∑

j;̃k

√
˝

2MN! j
k̃

[
b+j (̃k)e

−i(̃kñ−!j (̃k)t) + h:c:
]

ẽ j (̃k); j ∈ (x; y; z) (3.8)

for molecular displacements, we can  nd the averages of squares of displacements:∑
ñ

〈u2ñ〉 ≡ Nf〈u2〉=
∑

j;̃k

˝
2M!j

k̃

(1 + 2〈n̂k〉); 〈n̂k〉= 1

eE(̃k)=� − 1
: (3.9)

Introduction of the notation 〈u20〉= (1=N )
∑

k̃ ˝=2M!k one can  nd in (3.9):

〈u2〉 − 〈u20〉=
3
2#

˝
M!D

(
E2
0

�
{

Z1

(
(
�

)

− ,Z1

(
,

(
�

)
+

�
(

[
Z2

(
(
�

)
− ,Z2

(
,

(
�

)]}
: (3.10)

The density of the  lm is given by the formula

�M =
M

〈a + u〉3 =
M

〈a0〉3
1

1 + 3〈u〉2=〈a0〉2 �M ≈ �M
0

(
1− 3〈u〉2

〈a0〉2
)

: (3.11)
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Using Debye’s approximation [14], we shall substitute 〈u2〉 in (3.11) with 〈u2〉 − 〈u20〉
from formula (3.10). Thus, we obtain

�M = �M
0

(
1− 9

2#
˝2(�

M 〈a0〉2EDE2
0

{
Z1

(
(
�

)

− ,Z1

(
,

(
�

)
+

�
(

[
Z2

(
(
�

)
− ,Z2

(
,

(
�

)]})
: (3.12)

Substituting (2.20), (3.7) and (3.12) in (1.1) we  nally obtain the expression for the
thermal conductivity coeIcient of thin  lm structures:

�f =
3kB

2#
˝�2

M!2
k

(
(
E0

)2{(
�
[(e(=� − 1)−1 − ,3(e,(=� − 1)−1]

+ 3
[

Z1

(
(
�

)
− ,2Z1

(
,

(
�

)]
+ 6

�
(

[
Z2

(
(
�

)
− ,Z2

(
,

(
�

)]

+6
(

�
(

)2 [
Z3

(
(
�

)
− Z3

(
,

(
�

)]}
�M
0

(
1− 9

2#
˝2

M 〈a0〉2ED

(
(
E0

)2

× �
(

{
Z1

(
(
�

)
− ,Z1

(
,

(
�

)
+

�
(

[
Z2

(
(
�

)
− ,Z2

(
,

(
�

)]})
: (3.13)

Formula (3.13) was analysed numerically as a function of the scaled temperature x =
�=(. The notation

4b=f(x) ≡ �b=f(x)
�0

; (3.14)

where

�0 =
8
9
(6#2)−2=3 ˝

a3

(
(
E0

)3

represents scaled thermal conductivity, is introduced into formula (3.13). The depen-
dence of scaled thermal conductivity on the scaled temperature is given in
Figs. 1 and 2.
It can be seen from  gures quoted that, at extremely low temperatures T 6 4 K and

at temperatures T ¿ 180 K, the thermal conductivity of a  lm is lower than that of a
bulk. In the temperature range 4¡ T ¡ 180 K the thermal conductivity of a bulk is
lower than that of a  lm.
At the end of this section we would like to point out an important fact: since

Eq. (2.15) does not have the solution kz = 0, all phonon energies in  lm have a
gap. Consequently, to excite the phonons in  lms some activation energy is necessary
[6,7,10–12].
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Fig. 1. Thermal conductivity versus temperature at extremely low temperatures (up to 5 K).
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Fig. 2. Thermal conductivity versus temperature at higher temperatures (in the range T ¿ 4 K).

4. The in�uence of boundary conditions

The inRuence of boundary conditions to the minimum of the activation energy will
be discussed here.
It will be assumed that the physical conditions at both boundaries nz = 0 and Nz

are the same. It will also be assumed that the lattice constants at boundary layers are
the same as in the volume of  lm. It means that Hook’s constants CH , as well as the
trigonometric part of parameter � (formula (2.8)) which is independent on molecular
mass M , do not change at the boundaries. We shall assume that only molecular masses
change at the boundaries. Their boundary values are M −M ′, where M is the mass of
volume molecules.
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Taking all this into account, we obtain the boundary corrections of the parameter �:

�′ = �0 = �N =
!2

�2

M ′

M
: (4.1)

On the other hand, the numerical solution of (2.15) has shown that for �′ = 1 the
minimal value of akz is akz

min = 1:22. Substituting this value in (4.1) we obtain

!min = 2� sin 1:22
2 ; (4.2)

wherefrom follows:
!min

�
= 1:146 : (4.3)

By combining (4.2) and (4.3) we  nd M ′=M = 0:76. This means that the masses of
boundary molecules M −M ′ are about four times smaller than the masses M of volume
molecules. More precisely

M − M ′ = 0:24 : (4.4)

If we assume the Debye’s frequency to be !D ≡ ED=˝=2
√
3�=150kB=˝, on the basis

of (4.2), it can be concluded that minimal temperature necessary to excite the phonons
is around

Tac ≈ 50 K : (4.5)

The result obtained has shown that the choice of boundary conditions is one of most
important elements in the synthesis of high-temperature superconductors.
At the end of the section we quote the general formula for correction of the parameter

� at the boundaries. If the changes of the boundary lattice constants are a → a∓a′; a′�a
then CH → CH ±C′

H ; C′
H�CH . If we assume that the mass changes are M → M ∓M ′,

the correction of the parameter � is

�′ =
!2

�2

(
∓M ′

M
± C′

H

CH

)
∓ 2a′kx sin akx ∓ 2a′ sin aky : (4.6)

This general formula enables the choice of optimal boundary conditions in  lms.

5. Conclusion

The results obtained show that the thermal conductivity coeIcient of a  lm is con-
siderably lower than that of a bulk at low temperature, where the thermal conductivity
of bulk decreases as T 3. This result is practically applicable: sandwich of several  lms
would be a better thermoisolator than the bulk structure of the same thickness.
In the analysis in Section 4 it has been shown that, by convenient choice of boundary

conditions (implantation of light molecules at boundaries), a relatively high activation
temperature (about 50 K) can be reached.
It should be noticed that, in the “cut-oJ” case (boundary corrections of the parameter

� are equal to zero), the activation temperature is around 20 K for the  lm of the same
thickness.
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Higher activation temperatures cause lower thermal conductivity. Consequently, if
we implant light molecules in the  lm boundaries, we shall get several times better
thermal isolation.
In accordance with the Viedeman–Frantz rule, the electrical conductivity is pro-

portional to thermal conductivity. This leads to the conclusion that  lms are worse
electrical conductors than bulk structures of the same material.
It could be interesting to estimate the superconductive properties, since worse con-

ductors are, in principle, better superconductors.
The results obtained here are compared to the theoretical results as well as to the

experimental data from Refs. [15–18].
The theoretical results are in qualitative agreement with the experimental measure-

ments from Ref. [15]: in the range of temperatures higher 50 K thermal conductivity
of thin structure is represented by convex curves. In bulk structure the corresponding
curves are concave. In connection with this one can see Figs. 2a and b from Ref. [15]
and Fig. 2 on our paper.
We found satisfactory agreement our results with corresponding theoretical results

in Refs. [16,17]. The curve for thermal conductivity from Ref. [16] has the same trend
as our curve in Fig. 2. In Ref. [17] was shown that phonons in thin structure have gap
in dispersion law. The same is obtained in our theory.
In the paper [18] the experimental curve is given for more wide temperature interval.

Analysis of the curves given in Fig. 4 from Ref. [18] shows that thermal conductiv-
ity of thin structure is higher than that of bulk in the temperature range 1–10 K. For
T ¿ 10 K thermal conductivity of bulk is higher than in corresponding thin structure.
For extremely low temperature, thermal conductivity of thin structure has to be lower
than that of bulk due to the presence of gap in phonon spectra. This range of temper-
atures was not experimentally caught in Ref. [18].
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